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ABSTRACT 

The aim of this work is to study the binding energy of the 
3
He nuclei moving in a hot 

low-density vapor of symmetric nuclear matter of protons and neutrons. We are 

mainly interested in studying the effect of the inclusion of the CM momentum of the 

3
He nuclei on their binding energy. The surrounding nucleons are in thermal and 

chemical equilibrium with the nuclei. We will try to find the Mott density, which is 

the density of the surrounding vapor at which the binding energy of the 
3
He nuclei 

become zero and so they will dissolve into the surroundings due to the Pauli blocking 

effect, and how the Mott density will be affected by considering the CM momentum 

of 
3
He nuclei. We found that the existence of protons and neutrons in the vapor 

surrounding the 
3
He nuclei will decrease their binding energy and so they will 

dissolve into their components and become part of the surrounding vapor. We also 

found that this dissociation process depends on the temperature. The main conclusion 

of our work is that the assumption that the 
3
He clusters are moving (inclusion of CM 

momentum) within the surrounding vapor will make them survive to higher densities 

at the same temperature.  
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 ملخص

وسط ساخن و قليل الكثافة من البروتونات و النيوترونات تتأثر بهذا والموجودة في  المحدودة ان المادة النووية

انواية على استقرار  البروتونات و النيوتروناتدراسة مدى تأثير هذه  هو هذا البحث الهدف من. الوسط
3
He 

مع البخار المحيط  حراري وكيميائياذا افترضنا أنها موجودة في حالة اتزان التي تتحرك في هذا الوسط 

نريد ان نتوصل لكثافة الوسط الذي تتفكك عنده انواية . البروتونات و النيوتروناتالمحتوي على هذه 
3
He  و

البروتونات و توصلنا في هذه الدراسة الى أن وجود . كيف تختلف هذه الكثافة مع اختلاف درجة الحرارة

 انواية في البخار المحيط يعمل على زيادة عدم استقرار  النيوترونات
3
He  عندما تصل كثافةفتتفكك وتتلاشى 

و النتيجة الاساسية  .رجة حرارة لأخرىو ذلك يختلف من د لتصبح جزءا من الوسط المحيط لحد معين البخار

لهذا البحث هي انه عند الافتراض ان نواة 
3
He تحركة و ليست ساكنة تستطيع ان تتفادى الاضمحلال حتى م

 .كثافات اعلى عند نفس درجة الحرارة
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CHAPTER 1. INTRODUCTION 
 

One of the most important topics in nuclear physics is to study the composition, 

stability, and the dynamics of finite nuclear matter (nuclei) under different conditions. 

Heavy-ion collisions are a very powerful tool to obtain reliable information about 

nuclear matter behavior over a wide range of densities and temperatures.  

Most recent studies in medium energy heavy-ion collisions indicate that there is a 

possibility that the hot (excited) nuclei resulting from the collision will fragment into 

small clusters of nucleons. This fragmentation process in the nuclear matter is called 

the liquid-gas phase transition in which the nuclear matter will transfer from the 

liquid-like phase to the gaseous one [1, 2].  

Neglecting the surface and Coulomb effects (dealing with infinite nuclear 

matter), it was shown that above or at a special temperature (critical temperature) 

only the gaseous phase can exist. Below the critical temperature the liquid and gas 

phases coexist. Attempts to study the liquid-gas phase transition in finite nuclear 

matter were proposed by Jaqaman et. al. in their studies [1, 2]. They concluded that 

considering the surface effects and the Coulomb force will reduce the critical 

temperature by a few MeV. They considered, for example, in their work [2] a system 

of infinite nuclear matter (neglecting both the size effects and the Coulomb force) and 

found that the critical temperature is about 22.9 MeV. In the same work they also 

found that for a system composed of 50 protons and 50 neutrons when the Coulomb 
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force is neglected the critical temperature of this system is about 18 MeV. On the 

other hand, considering the contribution from the Coulomb effect reduces the critical 

temperature to about 16 MeV.  

In 1985 Levit and Bonche [3] studied the effect of the Coulomb force on the 

liquid-gas phase transition in finite nuclear matter. They showed that above a certain 

temperature (limiting temperature), which is much lower than the critical temperature 

of infinite nuclear matter, the charged nucleus is unstable and will fragment into 

small clusters due to the repulsion between its protons.  

In 1989 Jaqaman [4] improved the equation of state considered by Levit and 

Bonche by considering asymmetric nuclear matter. In another study [5] Jaqaman 

generalized the equation of state used in [4] by introducing the density-dependent 

nucleonic effective mass to investigate how it affects the stability of the hot nuclei. 

He also showed that considering  the electric charge of the vapor will raise the value 

of the limiting temperature. 

Most recent investigations [6-14] studied the structure and dynamics of nuclear 

matter in the vapor phase at very low densities. It was shown that bound states appear 

in very low density nuclear matter to minimize the energy. These bound states are 

light clusters such as deuterons, tritons, helions and alpha particles.  

In 1988 Jaqaman proposed a study of the nuclear matter at very low temperatures 

and very low densities [6]. After solving the Hartree-Fock equations of nuclear matter 
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with the Overhauser’s orbitals analytically, he noticed that alpha particles are 

dominant in the low-temperature region (T ≤ 1.1 MeV). 

Horowitz and Schwenk in their research [7] in 2006 studied the formation of 

clusters in low-density nuclear matter. They used the virial  expansion to derive the 

equation of state of low-density nuclear matter composed of protons, neutrons and 

alpha particles. They studied the composition, entropy, energy, and the symmetry 

energy.  In a recent work [14] the contribution from these clusters was considered 

while studying the stability of hot charged nuclei. It was concluded that the presence 

of clusters in the vapor has a significant effect on the stability and so on the limiting 

temperature. 

A nucleus can be considered as a strongly interacting system of fermions. In the 

normal case nuclear matter is composed of protons and neutrons which are confined 

within the nucleus of any atom. In this case nuclear matter is in its lowest energy 

(stable) configuration. The density of nuclear matter in normal form is called the 

saturation density. In general; the normal saturation density    of nuclear matter is 

estimated to be  in the range 0.15-0.17 nucleons/fm
3 

[2-6, 12, 13]. At the saturation 

density the binding energy of nuclear matter is in its maximum value, or nuclear 

matter is in its minimum-energy state.  

The surrounding environment will affect the stability and so the structure and the 

binding energy of the cluster. At a certain density of nucleons in the surrounding 
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vapor clusters will dissolve and  become part of the surrounding environment. This 

dissolution process is called the Mott effect. The density at which the cluster binding 

energy vanishes and the cluster dissolves is called the Mott density. Its value depends 

on the cluster type. For example, it was found in [8] that at T = 0 MeV and assuming 

that the total momentum of the cluster P = 0, the Mott density of the deuteron is about 

10
-3

 nucleons/fm
3
 and the Mott density of the alpha particle is about 10

-2
 

nucleons/fm
3
. The Mott effect occurs as a result of the Pauli blocking effect which is 

a consequence of the Pauli exclusion principle according to which identical nucleons 

are prohibited from occupying the same quantum state. This in turn results from the 

antisymmetrization of the total wave function involving the nucleons inside and 

outside the nucleus [8-14]. 

An attempt to study the medium effects on the bound clusters was suggested by 

Röpke et al. [8]. They studied the effect of the surroundings on the stability of the 

light-clustered nuclear matter from a quantum statistical point of view. They 

determined the Mott transition density beyond which the many-body clusters dissolve 

was determined. 

A year later Röpke and his coworkers [9] considered the correlation effects in the 

surrounding medium. Another new step in their work was that they studied the 

properties of clusters embedded in a hot medium consisting of nucleons and clusters. 

They assumed that the nucleon-nucleon interaction was of the simple Skyrme type 

[15]. 
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Beyer et. al. [10] considered symmetric nuclear matter which contains equal 

number of protons and neutrons at a finite temperature to study the properties and 

distribution of the light clusters up to A = 4. They studied the distribution of the 

nuclear matter at low-density limit and show that the binding energy of the clusters 

depends on the density, temperature and the center-of-mass CM momentum of the 

cluster.  

Medium effects in low-density nuclear matter was also studied in [11] by Röpke 

using the quantum statistical approach. He considered the medium effects on the 

clusters by describing the self-energy and the Pauli blocking. He found that the Mott 

density of the alpha particle is about 0.006 nucleons/fm
3 

at T = 0 MeV. 

A recent study [12] of the medium effects on deuterons, tritons, helions, and 

helium nuclei was carried out by Typel et al.. They calculated the Mott density at 

different temperatures and for various light nuclei/clusters. All these calculations 

assumed that these clusters are at rest. They concluded that as the density increases 

these clusters dissolve when the binding energy decreases to zero mainly because of 

Pauli blocking effect. They also found that the Mott density increases with 

temperature regardless of the cluster type. This result is expected as the Pauli 

blocking is less effective with increasing temperature. 

Another recent work by Röpke [13] investigated the stability of light clusters up 

to A = 4 in hot and dense nuclear matter. Röpke used the quasiparticle approximation 

to study the dissolution of light clusters due to the Pauli blocking shift. He showed 
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that for the deuteron (A = 2) at zero CM momentum the Mott density increases with 

temperature. He also noticed that the Pauli blocking effect is less effective when the 

CM momentum increases at fixed temperature.  

We aim in this work to extend the work which was done by Typel and his 

coworkers [12] by correctly including the CM momentum. In their work they 

assumed that the 
3
He nucleus is at rest. The new thing in our work is that we will 

assume that the 
3
He nucleus is moving in a hot low-density medium of protons and 

neutrons which is more realistic.  

We will try to find the Mott density at which the binding energy of the 
3
He 

nucleus becomes zero and so it will dissolve into the surroundings due to the Pauli 

blocking. We will use the harmonic oscillator shell model wave function to describe 

the internal wave function of the nucleus. 

After this introduction we will discuss the properties of nucleons and the Skyrme 

interaction in the next chapter. The nuclear shell model will be the subject of chapter 

(3). The medium–dependence of the binding energy, which is the main idea of this 

research, will be discussed in chapter (4). In chapter (5) we used the Fermi Dirac 

statistics to find the expectation value of the binding energy of 
3
He nuclei at different 

temperatures. In chapter (6) we will discuss the results of our research. 
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CHAPTER 2. PROPERTIES OF NUCLEONS AND NUCLEAR 

INTERACTION 

The nucleus can be described as a medium of strongly interacting nucleons. There are 

two types of nucleons: protons and neutrons. Each type of nucleus is characterized by 

its number of protons and neutrons which distinguishes it from others. The study of 

nucleons and the interaction between them is one of the most active fields in physics. 

2.1 PROPERTIES OF NUCLEONS: 

At first it was thought that nucleons are elementary particles. Now it is known that 

each nucleon is made up of three quarks  bound together by the so-called strong 

interaction which is mediated by gluons.  

Nucleons (protons and neutrons) are the most common members of the baryon 

family. The proton is composed of two up quarks and one down quark. On the other 

hand the neutron consists of one up quark and two down quarks. The difference 

between their masses is relatively small. It was found that the mass of the proton is 

938.272  MeV/c
2
 while the mass of the neutron is 939.566  MeV/c

2
. [17]. 

The proton has a charge of +1e, where e = 1.60217733(49)×10
-19

 C is the 

magnitude of the electric charge of the electron, while  the neutron is neutral (has no 

charge). This can be interpreted depending on the idea that protons and neutrons are 

composed of quarks which are charged elementary particles. The charge of the up 
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quark is       and the charge of the down quark is      . This makes it easy now 

to conclude that the total electric charge of the proton is     and of the neutron is 0 

[17]. 

Both protons and neutrons have spin     and so they are fermions. This 

indicates that when nucleons interact with each other the Pauli exclusion principle 

must be applied and the total wave function must be antisymmetric. We will also see 

that the spin of nucleons plays an important role in their interactions since the nuclear 

force is found to be spin-dependent [17]. 

It is clear from the properties of the proton and the neutron mentioned above that 

protons and neutrons are similar in most of their properties, for example, both are 

fermions and the difference between their masses is very small (about   ). It was 

also observed that the nuclear force affects protons and neutrons in the same way, 

thus the proton-proton interaction, neutron-neutron interaction, and neutron-proton 

interaction are similar. This is the so-called charge-independence property of the 

nuclear force [17, 19]. The only difference between them is in the electromagnetic 

properties, thus, if one neglects this difference the proton and the neutron can be 

treated as two states of the same particle. If we want to adopt this idea another label 

must be introduced to distinguish between them. This label (operator) is the isospin 

(  ) which is mathematically similar to the intrinsic spin (  ) label. Thus, it is easy now 

to say that the proton and the neutron are two states of the same particle. Using the 
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same mathematics of the intrinsic spin operator we can say that the value of the 

isospin is       for the nucleon with two possible values of its third component (  ) 

to distinguish between the proton and the neutron. While one has         the 

other has         [17].   

2.2 NUCLEON-NUCLEON INTERACTION:  

The nucleon-nucleon interaction is one of the most important issues in nuclear 

physics. Until now this interaction is not known exactly, so that many attempts were 

made to suggest reasonable approximations to an effective nucleon-nucleon 

interaction. As mentioned above nucleons are not elementary particles, thus it is 

expected that the quarks that make them up will contribute in the interaction between 

nucleons. Since quarks cannot be found in isolation the interaction between nucleons 

results from the exchange of mesons which are quark-antiquark pairs.  

As a first step in understanding the nature of the nucleon-nucleon interaction it is 

convenient to make use of the simplicity of the deuteron as it contains only two 

nucleons (a proton and a neutron) loosely bound to each other. 

2.2.1 THE DEUTERON: 

The deuteron is a very simple bound system with special properties. The binding 

energy of the deuteron is                and its mass is                  . It 

is also known that the parity of the deuteron structure is positive [17]. Here are the 



10 

 

measured values of some of the most common observed properties of the deuteron 

listed in Table 1 

Table 1. The observed properties of the deuteron in its ground state
1
 

Ground-state property Value 

Binding energy 2.22457312(22) MeV 

Spin and parity,       

Magnetic dipole moment,    0.857438230(24)    

Electric quadrupole moment,    0.28590(30) e.fm
2
 

 

As mentioned above the deuteron consists only of one proton and one neutron 

whose intrinsic spins can add up to 1 or 0. This means that we have two possibilities 

of the intrinsic spin (S) of the deuteron: S = 0 (singlet state) and S = 1 (triplet state). 

But it was found that the deuteron exists only in the triplet state. This can be shown 

by making use of the fact that the deuteron parity is positive. To be more clear let us 

separate the wave function of the deuteron into three parts: the intrinsic wave 

function of the proton, the intrinsic wave function of the neutron, and the third part is 

the orbital wave function which represents the relative motion of the proton and the 

neutron. This separation process makes it easy for us to detect that the parity of the 

                                                           
1
 Note that the numbers given in parentheses represent the uncertainties in the last digits of the 

measured values. Also    
  

   
  is the nuclear magneton, where   is the reduced Planck constant and 

   is the mass of the proton.   
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deuteron is only associated with the parity of the orbital wave function of the relative 

motion as the intrinsic parities of the wave functions of both the proton and the 

neutron are identical (two states of the nucleon). But the orbital wave function is 

given by the spherical harmonics   
       whose parities are given by the factor 

     , and so we can now use the fact that the parity of the deuteron is positive to 

conclude that the orbital angular momentum L must be even [17]. 

Depending on the above discussion and also making use of the fact that the total 

spin of the deuteron in its ground state is J = 1, where J = S + L, it is easy to conclude 

that the allowed values of the orbital angular momentum L are 0 or 2. It is clear now 

that it is impossible for the deuteron to be in the singlet S = 0 state, as when S = 0 and 

L is even we will never get J = 1, and as a result the spin angular momentum of the 

deuteron is S = 1 (triplet state). 

The deuteron in its ground state still has two possibilities, L = 0 and L = 2, for 

the space part of the wave function. This means that both the 
3
S1 (triplet S state) and 

3
D1 (triplet D state) components appear in the deuteron wave function. These facts 

about the deuteron give a good indication that the nuclear force mixes different L-

components [17, 18]. 

The existence of both    
 - and    

 - states in the deuteron ground state can also 

be verified depending on other observed properties of the deuteron, such as the 

electric quadrupole and the magnetic dipole moments. It is known that the electric 
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quadrupole operator measures the departure from a spherical charge distribution of a 

nucleus. Since the state    
  is spherically symmetric, the observed positive value of 

the deuteron electric quadrupole moment                    is a strong 

evidence for  the presence of the    
 -component in the deuteron ground state [17].  

The magnetic dipole moment of the deuteron    also indicates that there is a 

small admixture of the    
 -component in the deuteron ground state. At first let us   

assume that there is only the    
        state in the deuteron ground state. In this 

case the deuteron magnetic dipole moment results only from the sum of the intrinsic 

dipole moments of a proton     and a neutron    [17], thus 

                              
                                                 (2.1)  

The observed value of    is            (see Table 1) which is slightly different 

from the value obtained from eq. (2.1). This leads us to conclude that the ground state 

of the deuteron is not a pure state and it is an admixture of    
  and    

  states. Now 

the deuteron wave function can be written as 

            
         

                                           (2.2) 

with the normalization condition 

                                                       (2.3) 
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Eq. (2.3) together with the observed experimental values of the magnetic dipole 

moment    and the electric quadrupole moment     can be used to obtain the values 

of   and  . The value of   , which represents the probability that the deuteron is in 

the    
  state, is about 96%. On the other hand the probability of being in the    

  state 

(  ) is 4% [19]. This means that the deuteron ground state wave function is a linear 

combination of the    
  state (the dominant state) and the    

  state. The very small 

admixture of the    
 -component in the deuteron ground state plays an important role 

in the study of the properties of the nuclear force as we shall see later. 

2.2.2 PROPERTIES OF THE NUCLEON-NUCLEON INTERACTION: 

The above discussion of the deuteron properties indicates that the deuteron is a rich 

source for gathering important information about the properties of the nucleon-

nucleon interaction which in turn plays a vital role in understanding the nuclear force.  

The dominant existence of the  triplet spherically symmetric state in the deuteron 

wave function indicates that the nucleon-nucleon potential contains a dominant 

central spherically symmetric term       which depends only on  . This central 

attractive term is responsible for holding nucleons together within the nucleus as it 

can overcome the central Coulomb repulsion between protons [17, 19]. 

As mentioned above, the small admixture of    
  state in the dominant 

spherically symmetric    
  state in the deuteron ground state indicates that the 

nucleon-nucleon interaction is not purely central as it contains different values of L-
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components. This means that a small non-central tensor component must be added to 

the central dominant force between two nucleons. The tensor force term depends 

mainly on the separation position vector    and the spins of the two nucleons     and 

   . This is not strange as a nucleon is mainly characterized by its spin. Thus the 

tensor force depends on the scalar product of    and the spin        , or the cross 

product of them         as these are the only terms relating    and    with each other. 

Thus the general form of the tensor character of the nucleon-nucleon interaction can 

be written as      
                 

          . If we take the average over all angles the 

tensor force term     will vanish. This means that this term is negligible if we 

consider finite nuclear matter with many nucleons [17, 18, 19]. 

Other restrictions on the nucleon-nucleon interaction can also be concluded by 

considering the symmetry requirements on a two-nucleon system. For example, it 

was assumed that the nucleon-nucleon interaction is charge symmetric. This means 

that after subtracting the Coulomb interaction between a pair of protons, the proton-

proton and the neutron-neutron interactions are similar [19]. Also the nucleon-

nucleon interaction is assumed to be charge-independent, that is the proton-proton, 

neutron-neutron, and the proton-neutron interactions are assumed to be equal. This 

assumption is usually made although there is a small difference (   )  between the 

proton-neutron interaction and the interaction between a pair of protons or a pair of 

neutrons [17]. 
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The invariance of nucleon-nucleon interaction under the translation of the whole 

system of the two nucleons in space is another symmetry restriction in the nuclear 

interaction. This means that the interaction between two nucleons depend only on the 

relative position of the two nucleons with respect to each other            and not on 

their absolute positions (    and    ). The nucleon-nucleon interaction can also depend 

on the relative momenta of the two nucleons    
 

 
         . This property is known 

as the Galilean invariance of the two nucleon system. Beside the translational and 

Galilean invariances, the nucleon-nucleon interaction also satisfies other symmetries, 

such as, the invariance under a rotation of the coordinate system or a permutation 

between the two nucleons, time reversal       , and parity invariance  [17].  

The dependence of the two-nucleon interaction on the relative momenta of the 

two nucleons will add a new term to the nucleon-nucleon interactions. This term is 

called the spin-orbit term as it depends on both the total intrinsic spin            

and the total relative orbital angular momentum           of the two-nucleon 

system. The general form of the spin-orbit term, which satisfies both the parity and 

time reversal invariances, is              , where        is some function of   [17, 19]. 

Another term, which is a spin-dependent one, must be added to the nucleon-

nucleon potential. The existence of such term is mainly predicted depending on the 

fact that only the triplet (S = 1) state exists in the deuteron. This term must also 

satisfy the parity and translation invariances. The general form of this term is 
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            , where      is an arbitrary function of   and    is any constant 

which is determined by fitting the experimental data. Also in this term    

 

 
   

 

  
         is the spin exchange operator which acts on the spin states of the 

two-nucleon system. When    acts on the triplet state it gives +1 as this state is 

symmetric under the exchange of the spins of the two nucleons. On the other hand, 

when it acts on the singlet spin state, which is antisymmetric, it gives -1 [18]. 

Although the study of the two-nucleon systems, such as the deuteron, is an 

important source of gathering information about the nuclear force, it is on the other 

hand not enough or in other words another source must be used in order to obtain 

better results. Thus many experimental approaches, in which one nucleon is scattered 

off another one, were made to achieve this purpose. The results of nucleon-nucleon 

scattering introduced a new progress in the understanding of the nuclear force.  

By analyzing the nucleon-nucleon scattering results at different ranges of 

energies it was noticed that the nucleon-nucleon interaction can be divided into three 

parts. The short-range repulsive part (r ≤ 1 fm) indicates that the nuclear force must 

contain a repulsive hard core. The intermediate-range part (1 fm < r < 2 fm)  and the 

long-range part (r > 2 fm) [17] are generally attractive. The presence of the short-

range  repulsive part in the nucleon-nucleon interaction is consistent with the known 

fact that the nuclear density is roughly constant which means that there is something 

preventing nucleons from being very close to each other. 
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Depending on the results of the nucleon-nucleon scattering experiments it was 

also possible to find evidence for other properties of the nucleon-nucleon interaction. 

For example, it was found that the proton-proton scattering parameters (after 

subtracting the effect of the Coulomb force)  are approximately similar to those of 

neutron-neutron scattering, and thus, it is convenient to describe the nucleon-nucleon 

interaction to be charge symmetric [19].  

In summary, one can say that studies of the deuteron properties, the symmetries 

of the two-nucleon systems, and the nucleon-nucleon scattering experiments enable 

us to suggest a reasonable potential describing the nucleon-nucleon interaction. The 

dominant term in this potential is a central attractive potential with a repulsive 

hardcore. There are also small contributions to the nucleon-nucleon potential that  

include a non-central tensor force component, a spin-orbit term, and a spin-dependent 

term.  

2.2.3 NUCLEON-NUCLEON POTENTIALS: 

In the 1930’s Yukawa proposed the first step towards a fundamental theory of the 

nucleon-nucleon interaction. He followed a physical mechanism to formalize  his 

theory. Yukawa made an analogy with the quantum electrodynamics which says that 

the electromagnetic interaction between charged particles is contributed by the 

exchange of virtual photons, and thus, he predicted that the nucleon-nucleon 
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interaction is mediated by the exchange of virtual particles (mesons). By solving the 

time-independent Klein-Gordon equation,  

       
    

                                                (2.4) 

Yukawa obtained a general form of the nucleon-nucleon potential which is called the 

Yukawa potential 

     
 

  

       

 
                                               (2.5) 

where   is an adjustable coupling constant,    is the reduced Planck constant,   is the 

speed of light, and   is the mass of the exchanged meson. The propagation process 

of mesons between nucleons must satisfy the uncertainty principle. This means that if 

only one meson is exchanged then its  means that the energy of the transferred meson 

and its life time is related through the equation [20]: 

                                                            (2.6) 

From this equation we can find that the range of the force, which results from the 

exchange of a meson of mass   between two nucleons, is given by 

          
 

  
                                                   (2.7)  

It is easy now, from eq. (2.7) , to notice that the main factor that affects the range of 

the nucleon-nucleon interaction is the mass of the exchanged meson. As we can see 
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from this relation the heavier the mass, the shorter  is the range. We can see also that 

eq. (2.5) can be written in terms of eq. (2.7) as, 

     
 

  

         

 
                                                   (2.8) 

which indicates that the Yukawa potential shows that the range of the nuclear 

potential depends strongly on the mass of the exchanged meson.  

The discovery of the pion (  meson) in 1947 [26] supported the idea proposed by 

Yukawa. If we substitute the mass of the pion (           ) in eq. (2.7), we will 

obtain the observed value of the nuclear force range which is about 1.4 fm. As 

mentioned above the nucleon-nucleon interaction can be divided mainly into short-, 

intermediate-, and long-range parts. By fitting the experimental data it was noticed 

that Yukawa’s idea of simple one-pion exchange potential (OPEP) gives reasonable 

results for the long-range part [17].  

In attempting to construct a potential that has the correct form for long-, 

intermediate-, and short-range parts a phenomenological approach was adopted. This 

approach was mainly based on generalizing the one-pion exchange (OPE) idea 

proposed by Yukawa to the so-called one-boson exchange (OBE) idea [17]. 

According to this idea the long-range part is contributed by pions while the 

intermediate-range part is made of single heavier mesons. The short-range repulsive 

part comes from the exchange of heavy mesons, such as the ρ-, ω-,and η-mesons [18]. 
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The masses and the range of exchange of some of the mesons are summarized in 

Table 2 

Table 2. Masses and exchange ranges of some mesons that contribute to the nucleon-

nucleon interaction. 

Meson Particle 
Particle Mass 

(      ) 
Range (  ) 

π-meson 140 1.4 

η-meson 549 0.35 

ρ-meson 769 0.25 

ω-meson 783 0.25 

It is also possible to consider the exchange of more than one meson to obtain the 

intermediate- and short- ranges of the nucleon-nucleon potential. This can be 

interpreted easily by rewriting eq. (2.7) for the case in which n mesons are  

exchanged. If we do this we will get 

          
 

   
                                         (2.9) 

Now it is clear, from eq. (2.9), that as the number of exchanged mesons increases 

the range of the interaction will be shorter. In general, the intermediate-range is 

dominated by two-pion exchange while the short-range part results from multipion 

exchanges. This can give us a good indication to the many-body part of the nuclear 

force. For example, if a nucleon emits two mesons, they may be absorbed by two 

different nucleons, and this in turn indicates the existence of three-body forces [17, 
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20]. The 
3
He nucleus, which we will study in our work, is a three-nucleon system 

(contains two protons and one neutron) and so two- and three-body interactions must 

be considered in this case as we will see below. 

Although this approach is successful in many applications, it still has some 

difficulties as we have different mesons with different masses. Also this approach 

assumes that mass is an adjustable parameter which contradicts with the properties of 

real mesons [17]. 

Another approach to formalize the nucleon-nucleon potential is based on 

effective field theory (EFT). This approach appeared after the discovery of quantum 

chromodynamics (QCD). It was useful especially in describing the short-range part of 

the nuclear potential [21, 22].  

One of the potentials derived from the EFT is the Paris potential [23] which was 

introduced by the Paris group in the 1970’s. The Paris group interpreted the nucleon-

nucleon interaction in the long- and intermediate ranges by the one- and two-pion 

exchange respectively. For the hard core they said that it mainly results from the 

exchange of three and four pions. Another group, whose work is approximately 

similar to the work of the Paris group, is the Bonn group [24]. The main difference 

between the two groups is in the implementation of the short-range nucleon-nucleon 

interaction. In the Bonn potential the repulsive short-range interaction is mainly 

contributed by the ω-meson exchange [25]. 
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Recently, approximately in the 1990’s, new phenomenological potentials were 

introduced to represent the nucleon-nucleon interaction. These potentials are called 

high-precision charge-dependent nucleon-nucleon potentials. The Argonne V18, the 

Nijmegen potentials (Nijm І, Nijm ІІ), and the Idaho potential are examples of such 

potentials [22, 25, 26, 27].   

2.3 EFFECTIVE NUCLEON-NUCLEON INTERACTION INSIDE NUCLEAR 

MATTER: 

The interaction between a pair of nucleons when they are free is different from that 

when they are near other nucleons as when they are bound within a nucleus. Thus, it 

is insufficient to specify the nucleon-nucleon potential completely by studies made on 

systems of two free nucleons alone. Nucleons within a nucleus interact with each 

other not only via two-body interactions, there are also three-, four-, and higher-rank 

interactions. The 
3
He nucleus, for example, which is the subject of our research is a 

three-nucleon system and so a  three-body force appears in it [21]. 

The effective nucleon-nucleon interaction for bound nucleons is not known 

exactly. Many attempts were made to suggest reasonable approximations to it. The 

Brueckner approach in the 1950s introduced one of the most important effective 

interactions in nuclear physics. Via this approach, which is mainly based on 

perturbation theory,  Brueckner theory provides a very powerful tool to interpret the 

existence of the repulsive hard core by describing the interaction between a pair of 



23 

 

nucleons when they are surrounded by other nucleons [21, 27, 28]. A study by Eden 

[29] used the Bruckner theory to study the structure and properties of finite nuclear 

matter. The success of the Bruckner-based approach in some aspects does not mean 

that it is simple. On the contrary, it is so complex and needs a lot of detailed work 

especially when used to study finite nuclei with a large number of nucleons.  

As an alternative, a phenomenological simple effective interaction was first 

proposed by Skyrme in 1959 [15]. The Skyrme interaction which is a zero-range 

effective nucleon-nucleon interaction was successfully used by Vautherin and Brink 

[16] in their study of the properties of nuclear matter and some closed-shell nuclei. 

The introduction of this zero range nucleon-nucleon interaction simplifies nuclear 

calculations and makes them easier. 

2.4 THE SKYRME INTERACTION: 

The original form of this interaction as in [16] is 

                                                              (2.10)                            

where, 

    represents the mostly attractive two-body interaction and, 

     represents the repulsive three-body interaction. 
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The general form of the two- and three-body interactions as used by Vautherin 

and Brink in their study [16] are 

                          
 

 
              

                 

                                     
                                                               (2.11) 

                                                            (2.12) 

 where    ,    and     are the position vectors of the nucleons,     
           

  
  and       

 
           

  
  represent the relative momentum operators acting on the right and acting on 

the left respectively and     
 

 
            

  

 
, where        is the two-body 

spin-orbit potential at the short-range limit. The Skyrme interaction parameters 

            and    are determined by fitting the properties of infinite nuclear matter 

and some finite nuclei. 

Vautherin and Brink also showed that for even-even nuclei three-body 

interactions are equivalent to a two-body density-dependent interaction  

     
 

 
          

       

 
                                       (2.13) 

where   is the density. But in the case of 
3
He this result cannot be used because of the 

unpaired neutron. 
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For simplicity we will neglect the momentum dependent terms in (2.11). This 

means that the form of the Skyrme interaction which we will use in this thesis is  

                         , and                                   (2.14)  

These are  the two- and three-body interaction terms which we will use in our work.        
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CHAPTER 3. NUCLEAR SHELL MODEL 

Several models have been proposed to study the structure of nuclei, with each method 

being based on a set of simplifying assumptions. Each model is successful and gives 

good results in a limited range, but fails when applied to data outside of this range.  

There are three nuclear structure models that were introduced to describe the internal 

working of the nucleus. These models are: the Collective Model, the Liquid-Drop 

Model, and the Nuclear Shell Model [17]. We will be using the Shell Model. 

3.1 EVIDENCE AND BASIC ASSUMPTIONS OF THE NUCLEAR SHELL 

MODEL 

The nuclear shell model is one of the most important and useful models of nuclear 

structure. The original motivation for proposing it was that it was found 

experimentally that nuclei with certain numbers of protons or neutrons have relatively 

high nuclear binding energies per nucleon. This means that these nuclei are more 

stable than others. These numbers were called the “magic numbers” as they were not 

understood at that time. This situation was similar to the extreme stability of the 

noble gases which was explained successfully by the existence of completely filled 

shells in the electronic shell model. This was the main reason which encouraged 

scientists to adopt the idea of shells to describe nuclear structure[19, 30, 31]. 
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The basic hypotheses of the nuclear shell model are similar to those of the 

electronic shell model. This means that protons and neutrons within the nucleus are 

constrained to move in shells with each shell being limited to a certain maximum 

number of protons or neutrons. It is known that nucleons are confined within the 

nucleus via the nuclear force which is a short-range force as mentioned in the 

previous chapter. When the distance between nucleons is very small the nuclear force 

becomes repulsive. This nucleon-nucleon repulsive force and the Pauli exclusion 

principle contribute to the independent motion of the nucleons within the very dense 

nuclear matter. The independent motion of protons and neutrons within the nucleus is 

a basic assumption of the nuclear shell model. Thus, the nuclear shell model is called 

the Independent-particle model [30, 32]. This independent motion of nucleons in turn 

reduces the many-body problem into many single particle problems. 

 Similar to the electronic shell model, when the outer shell is filled, the nucleus 

will have extreme stability. This is what happens when the number of protons or 

neutrons or both is magic. Thus, the shell mode was able to give a reasonable 

interpretation of the extra stability of some nuclei. On the other hand, the properties 

of neighbouring nuclei with a closed shell plus or minus one nucleon are determined 

by the unpaired nucleon. This effectively reduces the many-body problem to a single-

particle problem [31]. 

The idea of the nuclear shell model was first suggested in the 1930’s. This model 

was able to give a reasonable interpretation of the high stability of nuclei containing 
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the first four magic numbers 2, 8, 20, and 40. In 1949, Mayer tried to improved the 

conventional shell model to account for the higher magic numbers by introducing the 

strong spin-orbit force for individual nucleons. In the same year, Jensen and his 

colleagues Axel and Suess studied the shell model independently from Mayer and 

they reached the same result. Mayer and Jensen won the Nobel Prize because of the 

importance of the improvement they introduced in the shell model [30, 31, 32]. In 

1954 Brueckner improved the idea of independent motion of particles depending on 

the short range nucleon-nucleon repulsion and the Pauli exclusion principle [30]. 

3.2 CENTER-OF-MASS SPURIOUS STATES IN THE NUCLEAR SHELL 

MODEL 

The nucleus is a finite self-bound system. Nucleons in the nucleus can be treated as 

forming a many-body system. This system has both internal motion and center-of-

mass motion. While studying the nuclear dynamics of nuclei using the nuclear shell 

model, the basic problem was the appearance of spurious center-of-mass (CM) 

motion. As mentioned above the shell model assumes that nucleons move 

independently in a potential well       . Assuming that this nuclear potential well is 

centered at the origin, then in the ground state the CM oscillates in this potential with 

the zero point motion. The shell model wave function of the excited states may lead 

to the CM oscillating with higher energies. This is called spurious CM motion. This 
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means that to remove the contribution of this spurious motion it is necessary to split 

the many-body motion into center-of-mass motion and internal motion.  

Center-of-mass spurious motion in the shell model calculations was one of the 

active fields of research since the 1950’s. Many ways were suggested to solve the 

problem [33-42]. An effective way to separate the center-of-mass motion from the 

internal motion is to carry out the nuclear shell model calculations in the harmonic 

oscillator representation as first shown by Elliott and Skyrme in their work in 1955 

[34]. 

3.3 HARMONIC OSCILLATOR NUCLEAR SHELL MODEL: 

As the nuclear shell model is based on the independent motion of nucleons,  the shell 

model wave function                    can be written as the product of the single-

particle wave functions          . But nucleons within the nucleus are fermions which 

means that the total wave function must be antisymmetric. Thus, to ensure the 

antisymmetrization property the nuclear shell model wave function is written in the 

form of a Slater determinant, 

                   
 

   
    

                    
        

                   

       
 

       
               (3.1) 

where   is the number of nucleons, and     are the coordinates of the individual 

nucleons. The average interaction between a nucleon and all other nucleons can be 

expressed as a single-particle potential       which depends on the position of the 

nucleon. Different forms of the nuclear potentials were suggested. The harmonic 
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oscillator potential well is one of these nuclear potentials. Assuming that the 

harmonic oscillator potential well is centered at the origin,        
 

 
        

 , the 

shell model wave function can be written as: 

    
                                                               (3.2) 

where                     
  

         
 

 ,      
 

        
 

   

,    is the Hermite 

Polynomial of order  , and         , where   is the angular frequency of the 

harmonic oscillator. For the sake of simplicity, antisymmetrization of the wave 

function is not explicitly shown in eq. (3.2) and the following equations, but it is 

understood that antisymmetrization will be carried out in the actual calculation. The 

shell model wave function in eq. (3.2) still contains the unphysical vibration of the 

center-of-mass within the potential well, as will be shown below. Elliott and Skyrme 

[34] showed that the harmonic oscillator representation of the shell model wave 

function made it easy to separate the spurious CM motion. Taking the origin of the 

harmonic oscillator potential well at    , where             
   , and using the 

following change of variables 

           ,              ,…,             .                             (3.3) 

the wave function (3.2), can be written as  
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It is clear now that the term    
 

 
    

 represents the CM vibration within the 

harmonic oscillator potential well. This vibration is not physical and so must be 

removed. Thus, the usual shell model wave function is a  product of the internal wave 

function which represents the internal motion of nucleons within the oscillator, and 

the center-of-mass wave function which represents the unphysical oscillatory motion 

of the CM itself in the oscillator potential. Thus, 

    
      

    
                                              (3.4) 

The total momentum and the total angular momentum of any nucleus are 

conserved because the Hamiltonian of the nuclear system is invariant under 

translation and rotation [35, 37]. As mentioned above the nuclear wave function can 

be written as in (3.4). In this formula the internal wave function is invariant under the 

translation, while the center-of-mass wave function is not. This means that the center-

of-mass wave function is not an eigenstate of the nuclear Hamiltonian. Thus, the 
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contribution from the oscillatory center-of-mass motion is not physical and must be 

removed. After the elimination of this CM oscillatory motion the shell model wave 

function in its correct form is 

    
                                                                                                      

   
  

 
          

 
          

 
            

 
 
                              (3.5) 

To be more clear let us write the harmonic oscillator shell model  Hamiltonian 

     
   

  
  

  
    

 

 
     

                                  (3.6)  

where     and     are the coordinates and momenta of the individual nucleons. Using 

the change of variables as in [37] the harmonic oscillator Hamiltonian can be 

separated as                  

        
   

   
   

  
 

 
        

      
   

   
   

  
 

 
    

    
     

    

where          
 

   
    

 
      with      , and                    is the 

reduced mass of the     nucleon. 

                                                    (3.7) 

with 

    
   

   
   

  
 

 
        

                                 (3.8) 
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We can see that the CM oscillates in a potential 
 

 
      

  with an angular frequency 

  , given by     
     

  
  . This means that the minimum CM energy quantum is 

 

 
  . 

Now, both     and      obey the Schrödinger equation 

                                                             (3.9) 

and  

                                                             (3.10) 

Thus, the total energy of the nuclear system is  

                                                           (3.11) 

When all the nucleons are in the lowest energy level of the harmonic oscillator 

the CM oscillatory motion does not result in spurious states, but gives an unphysical 

value of 
 

 
   which must be subtracted. On the other hand, for excited states it may 

contribute even higher spurious amounts [39]. This means that the states are spurious 

if their oscillatory CM energy     is larger than 
 

 
   [37, 42]. A study of the excited 

states in 
4
He [40] showed that the center-of-mass motion will affect the calculated 

binding energy of the nucleus. Even in the ground state we need to eliminate the  

 

 
    from the total energy of the nucleus.  
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3.4 
3
He CALCULATIONS USING HARMONIC OSCILLATOR NUCLEAR 

SHELL MODEL:  

In our work we will study the stability of 
3
He nucleus (helion) when it is immersed in 

a vapor of nucleons. Here is a list of some of the properties of an isolated 
3
He nucleus 

[44] in Table 3 below  

Table 3. Observed properties of an isolated 
3
He nucleus 

Property Value 

Binding energy      7.718 MeV 

Spin,       

Mass 2809.41MeV/c
2
 

rms radius 1.76 fm 

 

The 
3
He nucleus consists of two protons and one neutron. Thus, using the 

Harmonic oscillator shell model representation, the correct wave function of the 
3
He 

nucleus in the ground state can be derived as in (3.5) to be 

               
  

 
          

 
          

 
          

 
                       (3.12) 

where   is the normalization constant.    ,    and     are the position vectors of the two 

protons and the neutron respectively. Also in eq. (3.12)             
   . This wave 

function does not include any unphysical oscillatory CM motion. Considering the 
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case that the CM of the 
3
He nucleus is not at rest, but moving with momentum      , 

within a cubic box of edge   the wave function will be 

        
 

       
  

 
          

 
          

 
          

 
                             (3.13)        

where      represents the wave vector of the 
3
He nucleus.  

As the 
3
He problem is a three body problem we will change the variables as in 

[43] 

         
 

          
 

          
 

 
 

 
   

    
    

                           

 
 

 
 
 

 
  

  
 

 
  

  
 

 
                

         
 

 

 

  

 
 

 
             

 

 
      

         
 

 
 

                                       (3.14) 

But,   

    
       

 
         

       

 
    

  

 
 , where            and           . 

Now the normalized wave function can be written as 

        
 

          
 

  
 

 
 

  
  

 
 
  

 
   

 

 
       

   

 
 
 

 
                

                (3.15)   

Now, let us examine the spin part of       . This is important because the 

interaction between the nucleons is spin-dependent. The total wave function of the 

two protons must be anti-symmetric. We can see from eq. (3.15) that the space part of 

the wave function of the two protons is symmetric. This means that, for the total 
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wave function of the two protons to be anti-symmetric, the spin part of the wave 

function of them must be anti-symmetric (singlet state)  and thus  

                  
 

  
                                  (3.16) 

where        means that the first proton is spin up, and        means that the second 

proton is spin down. As the neutron can be spin up or spin down, here we choose it to 

be up, and so the spin wave function will be  

           
 

  
                                               (3.17) 

Whereas the spin wave function of the two protons is always anti-symmetric so 

that the two protons always interact with each other in the singlet state, the interaction 

between a proton and a neutron involves both the singlet and  the triplet states. This 

can be seen as follows: 
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                                           (3.18) 

 We see that  the interaction between the first proton and the neutron may be in 

the triplet or singlet states. The probability of it being in a triplet state    
 

  
 

 

 

 
  

 
 

 

 
 

 
  and the probability of being in a singlet state  

  

 
 

 

 
 

 
. The same thing 

can be said about the spin wave function of the second proton and the neutron. 

3.5 BINDING ENERGY OF 
3
He USING HARMONIC OSCILLATOR 

NUCLEAR SHELL MODEL: 

The binding energy of a 
3
He nucleus is the energy needed to split it to its components 

which are two protons and one neutron. In order to find the binding energy of 
3
He we 

will use the Skyrme interactions (see eq. 2.14) to represent the interaction between 

nucleons within the harmonic oscillator potential well. The Hamiltonian of the system 

can be written as 
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                              (3.19) 

where  
   

  

 
     

   represents the kinetic energy of the three nucleons. The terms  

   ,    ,     and      represent the two- and the three-body interactions between the 

three nucleons. We will use the Skyrme interactions (see eq. (2.14)) to represent these 

terms. The expectation value of the Hamiltonian gives the total energy 

               

               
   

  
   

    
    

                                                 

               
   

  
   

    
    

                                        

                                                                                                         (3.20)  

We will now evaluate the first term in eq. (3.20) which represents the kinetic 

energy contribution to the total energy. For simplicity, we will do the calculations in 

the  -direction. The space part of the wave function in (3.15) can be written as: 
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where 
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Then, 
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                                   (3.23) 

Now, by adding (3.21), (3.22), and (3.23)  

    

   
  

    

   
  

    

   
    

    

   
 

    

   
  

    

     
  

 

 

    

   
           (3.24) 

In order to evaluate eq. (3.24) we will find 
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                                  (3.27) 

Then eq. (3.24) gives  

 
  

  
 

    

   
  

    

   
  

    

   
      

  

  
 
 

 
        

              
    

 

  
       

 where     . The first part gives the internal kinetic energy of the nucleons and 

the last term gives the kinetic energy of the CM. Thus 
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After some algebra, the kinetic energy can be expressed as 

     
    

  
 

    
 

  
 

Adding the kinetic energy from the   and   components of the wave function we get 

for the total kinetic energy: 

    
 

 

    

 
 

    

  
                                         (3.28) 

Now let us evaluate          ,          ,           and            to find 

the potential energy contribution.  

                                            
    

    

but it is clear from (3.16) that the two protons form a singlet state, thus the operator 

   gives    and so 

                            

 

       
 

 

  
 

 

  
     

  

 
   

 
 
      

  
 
 
 

 
               

                                     
 

     
 

 

  
 

 

    
 
 
    

    

                              
 

   

 

    
           

Using the same procedure, we can evaluate            and           . From (3.18) 

we note that a neutron-proton pair is      of the time in a triplet state and     of the 
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time in a singlet state. When the operator    acts on the triplet wave function we get 

   and on a singlet state  we get    so 

                     
 

   

 

    
   

 

 
       

 

 
        

                                                             
 

   

 

    
     

  

 
  

                               
 

   

  

                        (3.29) 

For the three-body Skyrme interaction 

                                            
    

     

                           

 

       
 

 

  
 

 

  
     

  

 
   

 
 
      

  
 
 
 

 
                          

                           

 

     
 

 

  
 

 

  
     

  

 
   

 
 
        

  
 
 
 

 
         

                          
  

   

  

                                                                                              (3.30) 

Thus,          

       
    

  
 

 

 

    

 
 

 

   

  

       
 

   

  

  
   

    

  
              (3.31) 

 where the term 
    

  
 represents the kinetic energy of the nucleus itself which does not 

contribute to the internal energy of the nucleus. Thus the binding energy of 
3
He 

nucleus can be written as 

             
 

 

    

 
 

 

   

  

       
 

   

  

                      (3.32) 
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Now, let us evaluate   by using the experimental value of the rms radius of the 

3
He nucleus which is 1.76 fm (see Table 3). We will use the wave function of the 

individual nucleon as the radius is similar for the three nucleons, so                   

              
        

   

                                                          
 

  
 

 

          
   

 

 

 

    

                                                                

Note that          has the general form: 

                 
        

  

where 

  
 

 

  

 
              ,   

 

   

 

          , and    
 

   

 

            . 

Also note that   and   are dimensionless. 

Now we want to find the values of     and    which satisfy the following two 

conditions: the first condition is that in the ground state the energy is            

MeV thus 

         
      

                                               (3.33) 

and the second one is the equilibrium condition which means that the energy is 

minimum (the binding energy is maximum) at this   so we have  

      

  
 
       

  , 

thus                                                                                                   
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                                                               (3.34) 

By solving these two equations (3.33) and (3.34) we get: 

   
  

  

 

 
 

   

 

 

       and        
 

   

 

   
  

 

 

                             (3.35)  

After substituting the values of   ,  ,   and   , in (3.35) we get  

                and                 .                       (3.36) 

In Fig. (3.1) the energy of the 
3
He nucleus is plotted as a function of  . It is clear that 

at         the energy has its minimum (-7.718 MeV).      

 

 

 

Fig. 3.1. The energy of 
3
He nucleus as a function of   
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CHAPTER 4. MEDIUM  DEPENDENCE OF THE BINDING 

ENERGY 

In the previous chapter we derived the formula of the binding energy of the 
3
He 

nucleus when it is alone. Now let us consider 
3
He nuclei moving in a hot low-density 

vapor of protons and neutrons which is the problem of our research. We will assume 

thermal and chemical equilibrium between the 
3
He nuclei and the surrounding vapor. 

4.1 WAVE FUNCTION OF 
3
He –NEUTRON SYSTEM:  

For simplicity, let us at first derive the wave function of a system composed only of 

one 
3
He nucleus and one neutron confined in a cubical box of length  . We will treat 

this neutron as a free particle and so its wave function can be written as 

 

                                                                    (4.1) 

where     is the wave vector of the free neutron and     is its position vector. In eq. (4.1) 

we assumed that the neutron has one value of linear momentum for simplicity. But as 

we mentioned above there is thermal equilibrium between 
3
He nuclei and the 

surrounding vapor which means that we must take the thermal average over all values 

of momentum as we will see in the next chapter. Now, using the same change of 

variables as in eq. (3.14) the space part of wave function of this system can be written 

as 

             
 

          
 

  
 

 

 
  

  

 
 
  

 
   

 

 
               

           

                         (4.2) 
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where           ,       
         

 
 and     

           

 
, so we can rewrite the wave function in 

eq. (4.2) to be 

             
 

        
 

  
 

 

 
  

    

  
 

 
               

  

 
              

  
     

 
                      (4.3) 

But the total wave function, 

                                                           (4.4) 

must be anti-symmetric under the exchange of any two identical nucleons as all the 

nucleons (nucleons within 
3
He nucleus and the free neutron) are fermions. To be 

more clear let us write the wave function as 

                                                          (4.5) 

The total wave function of the two protons must be anti-symmetric. It is clear 

from eq. (4.2) that the space part of the wave function of the two protons is 

symmetric. This means that, for the total wave function of the two protons to be anti-

symmetric, the spin part of the wave function of them must be anti-symmetric (singlet 

state)  and thus  

                  
 

  
                                    (4.6) 

Also, the total wave function of the two neutrons (the neutron confined in the 

3
He nucleus and the free one) must be also anti-symmetric. Here we have two cases: 
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the first one is that when the space part of the wave function of the two neutrons is 

symmetric, and its spin part is then  anti-symmetric, and is given by 

                  
 

  
                                (4.7) 

The second case is that when the space part of the two neutrons is anti-

symmetric, the spin part of them must be symmetric. Thus, in this case we have 

triplet symmetric states of the spin wave function of the two neutrons 

        
 

  
                                          (4.8.a) 

                                                      (4.8.b) 

                                                        (4.8.c) 

Now after the above discussion we can conclude that the total wave function can 

be written as 

              
 

 
      

            
           

             
      

         
 

 
      

            
           

            
               (4.9) 
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                    (4.10) 

where      
  denotes the singlet symmetric spin state and      

  the triplet anti-

symmetric spin state. Note that the minus sign in the first part of the total wave 

function makes the space wave function anti-symmetric in the two neutrons (particles 

3 and 4) while the plus sign in the second part makes it symmetric in the two 

neutrons. Also in eq. (4.10)   and    are the normalization constants for the 

symmetric and antisymmetric space wave functions of the two neutrons (note that the 

spin part is already normalized). After applying the normalization condition we get   

  
 

         
   

  
 
 

 
   

 

    
    

           

 

 

                                          (4.11) 

   
 

         
   

  
 
 

 
   

 

    
    

           

 

 

                                          (4.12) 
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The term  
   

  
 

 

 
  

 

    
     

 
       

 

 can be neglected as it is very small. This is 

because the size of the box     is much larger than the size of the 
3
He nucleus which 

is of the order of few femtometers. To be more clear let us calculate the  maximum 

value of this term. If we consider a box of edge         and using the value of               

             which was found in the previous chapter the maximum value of this 

term will be           which is   . Thus, we get 

     
 

  
                                                 (4.13) 

4.2 BINDING ENERGY OF 
3
He –NEUTRON SYSTEM:  

Now let us find the binding energy of a 
3
He nucleus  when  it is immersed in a vapor 

of nucleons. The Hamiltonian of the 
3
He-neutron system can be written as 

   
   

  

 
     

                   
   

  
  

                    

                                                                                                                            (4.14) 

where  
   

  

 
     

  and  
   

  
  

  represent the kinetic energies of the four nucleons. The 

terms     ,    ,     and      represent the two-body interactions and the three-body 

interactions between the bound nucleons while the terms     ,          ,     ,     , 

and       represent the two-body interactions and the three-body interactions between 

the free neutron and the nucleons bound in the 
3
He nucleus. We will use the Skyrme 

interactions defined in eq. (2.14) to represent these terms. 
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As we have shown in chapter 3, the Hamiltonian of the 
3
He nucleus can be 

separated into the Hamiltonian of the center-of-mass     and the internal 

Hamiltonian       which stands for the motion of the nucleons within the 
3
He nucleus 

(this is clear in eq. (3.7)). This means that the Hamiltonian of the system can be 

written as 

                     
   

  
  

   

                                    (4.15.a) 

Or 

                    
   

  
  

   

                                 (4.15.b) 

Eqs. (4.15.a) and (4.15.b) are equivalent. The only difference between them is the  

exchange between the two neutrons (particle 3 and particle 4) which reflects the 

indistinguishability between these two particles. 

The expectation value of the Hamiltonian gives the total energy of the 
3
He-

neutron system: 

                                                                                                             (4.16) 

                  
   

  
  

                                        

                                                    
   

  
  

          

                                                                           (4.17)  
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But as motioned above the total wave function has two parts: symmetric and anti-

symmetric as we can see from eq. (4.9). These two parts results from the exchange of 

the two identical neutrons (particle 3 and particle 4). This means that when we want 

to evaluate eq. (4.17) we must be careful to use the two forms of the Hamiltonian as it 

is defined in eqs. (4.15.a) and (4.15.b) to stand for this exchange. In the last term of 

eq. (4.17) we wrote     ,    ,    ,     ,       and      , but as we will see below 

these terms will be     ,    ,    ,     ,       and       when we exchange the two 

neutrons in the wave function. We will show this explicitly in evaluating each term in 

eq. (4.17) below. The first three terms in the above equation can be evaluated using 

the same procedure. Here we will evaluate the first one explicitly          

                            

Using eq. (4.9) we get 
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We can notice that the last two terms will vanish because we have orthogonal 

states; both the space parts and the spin parts of the bra and ket wave functions are 

orthogonal to each other. Thus, we need to evaluate the first two integrals only 

       
 

 
       

             
           

              
             

                                                     
            

           
             

       

                                      
 

 
       

             
           

             
             

                              
            

           
            

                    (4.18) 

Since the spin wave functions are normalized we are left with evaluating the space 

integrals,  and so eq. (4.18)  will be  
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        (4.19) 

It is clear that the first integral in the above equation contains the anti-symmetric 

space wave function of the two neutrons while the second one contains the symmetric 

space wave function of the two neutrons. Let us now evaluate the first integral which 

gives 
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Note from the above equation that we used both           and           to fit 

the exchange between the two neutrons in the wave function. But we know that the 

when the Hamiltonian operator           or           acts on the wave function it 

gives     , thus we get  

  
 

 

  

     
 

 

  
 

 

        
    

     
 
 
                         

   
  

                             
   

    

  
  

 
 
             

           
    

                            
  

    

    
  

 
                            

  
    

 
                 

           
    

                              
   

    

    
  

 
                            

  
    

 
                 

           
     

Here we can see that the first two integrals are equal and the last two integrals are 

equal, and so we have 

  
 

 

   

     
 

 

  
 

 

        
    

    
 
 
              

           
   

  

    
   

    

    
  

 
                            

  
     

 
                 

           
                                         

By evaluating the above two integrals we get 
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The second integral for the symmetric space wave function part in eq. (4.19) can 

be evaluated using the same procedure, and the result will be similar except for a plus 

sign instead of the minus sign so eq. (4.19) can be written as   

        
 

 
   

 

 
       

Using the same technique for the second two terms we get       
    

  
   and 

 
   

  
  

   
    

  
.  

Thus, eq. (4.17) will be 

      
    

  
 

    

  
                              

                                                                       (4.20) 

where    represents the binding energy of an isolated 
3
He nucleus (see Table 3). The 

terms 
    

  
 and 

    

  
 represent the kinetic energies of the 

3
He nucleus and the free 

neutron respectively. The terms                               and                 

                   stand for the potential energy contribution which results from the 

two- and three-body interactions between the free neutron and the bound nucleons 

inside the 
3
He nucleus. Again we will use the Skyrme interaction to represent these 

interactions. 

                                                                      

                                                                       (4.21) 

The first term is 
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Using the same procedure in deriving eq. (4.18) we get 

      
 

 
       

             
           

              
             

                                                   
            

           
             

       

                                  
 

 
       

             
           

             
          

   

                                                
            

           
            

       

 
 

 
       

             
           

              
                                

       
            

           
             

       

 
 

 
       

             
           

             
                                

       
            

           
            

       

       here exchanges the spins of the first proton (particle 1) and the free neutron 

(particle 4) which may interact via the triplet or singlet interaction. The probability of 

this interaction to be in a triplet state is     and the probability of it being in a singlet 

state is    . Thus, the operator        will give  

 

 
       

 

 
          

  

 
  

Since the spin wave functions are normalized we are left with evaluating the space 

integrals,  and so       will be 
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      (4.22) 

By evaluating the first integral in which the space wave function of the two neutrons 

is antisymmetric we get 
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The use of the two forms of the Hamiltonian:        and        is clear in the 

above equation. As we can see in the first integral we used            which results 

from the use of the       , while in the second integral we used            which 

results from the use of the       . This is because in the second integral we 

exchanged particle 3 and particle 4 (the two neutrons). The same thing can be said 

about the last two integrals. 

  
 

 
     

  

 
 

  

      
 

  
 

 

   
   

    

    
 

 
              

            
          

                  

                      
  

    

    
 
 
              

            
          

    

                       
  

    

     
  

 
                            

  
     

 
                 

            
          

                              

                       
  

    

    
  

 
                            

  
     

 
                 

            
          

     

Again we can see that the first two integrals are equal and the last two integrals are 

equal, and so we have 

  
 

 
     

  

 
 

   

     
 

 

  
 

 

   
   

    

    
 

 
              

            
          

                  

    
   

    

    
  

 
                            

  
     

 
                  

            
          

                                         

The integral     
   

    

  
  

 

 
             

            
          

    represents the 

interaction with the vapor (self-energy term). But when calculating the binding 
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energy of a nucleus in a vapor we compare its energy with the energy of its nucleons 

when they are unbound but still in the vapor. Thus, in our work when we do such a 

comparison we notice that the interaction between the nucleons of 
3
He nucleus with 

the surrounding nucleons in the vapor is approximately similar before and after the 

dissociation of the cluster. This means that the contribution from this term is very 

small and so it can be removed, thus we get 

  
 

 
     

  

 
 

   

      
 

  
 

 

             

          
    

    
  

 
                            

  
      

 
                 

           
          

       

The second integral for the symmetric space wave function part in eq. (4.22) can 

be evaluated using the same procedure, and the result will be similar except for a plus 

sign instead of the minus sign and  so  

               
  

 
   

  

 
 

 

      
 

  
 

 

                                         

     
    

     
  

 
                            

  
     

 
                 

              
          

        (4.23) 

Here we can notice the Pauli blocking effect in the term   
  

     

 
                 

. It is 

clear from this term that since the free neutron and the neutron confined within the 

3
He cluster cannot have the same momentum (Pauli principle) the presence of this 

neutron around the 
3
He cluster will affect its binding energy. The integral in eq. 

(4.23) can be evaluated as follows       
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But using             and    
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By completing the square for the integral over    we get 
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Again by completing the square for the integral over    we have 

   
 

 
 

   

 
 

 

 
  

 

     
    

 
   

   

 
 

 

   
  

 

     
    

 
       

 

  
  

  

 
              

  

    
    

 
        

 

         

   
 

 
 

   

 
 

 

 
  

 

     
    

 
   

   

 
 

 

   
  

 

     
    

 
       

 

 
 

 
    

 

      

   
 

 
 

   

 
 

 

 
 

 
    

 

 
  

 

     
    

 
   

   

 
 

 

 
  

 

     
    

 
       

 

      

      

   
 

  
 

 

 
  

 

    
     

 
       

 

                                                                                   (4.24) 

By substituting eq. (4.24) in eq. (4.23) we obtain  

               
  

      
  

 
   

 

   
 

 

  
 

 

 
  

 

    
     

 
       

 

                   (4.25)                            

We will obtain the same result after evaluating the second term in eq. (4.21), thus  

                                                                (4.26) 

Now let us evaluate                     using the same above technique 
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Here we can see that the two neutrons (particle 3 and particle 4) are     in the 

triplet state in the first part and      in the singlet state in the second part, and so 

the operator       , which exchanges the spins of the two neutrons, will give    in 

the first part and    in the second part. Thus, the term       will be 

  
 

 
               

              
                   

                                          
             

                   
     

                               
 

 
               

              
                  

                                         
             

                  
    

Similar to the above technique this equals to  
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This integral can be evaluated as in the case of        and so we have 

                           
  

                               (4.27) 

Now, we can rewrite eq. (4.21) in terms of eqs. (4.26) and (4.27) to be  

                                      
  

  
   

  

 
   

 

   
 

 

  
 

 

 
  

 

    
     

 
       

 

          

     
          

       
  

                (4.28) 

Now, we want to find the terms which represent the three-body interactions 
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The first term is 

                                                                     

                                                       
 

 
       

             
           

              
              

                                                                      
            

           
             

       

                                                        
 

 
       

             
           

             
              

                                                                       
            

           
            

       

Using the same technique in deriving eq.(4.23) we get  
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Using the three-body Skyrme interaction as in eq. (2.14) we obtained 
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Using the same procedure we can evaluate         and        , and thus we have 

                       
 

 

 

     
 

 

  
 

 

  

    
   

    

    
  

 
                            

  
    

 
                 

        
          

    

          
 

 

 

     
 

 

  
 

 

  

     
    

     
  

 
                            

  
     

 
                 

                                     
     

Thus,  

                       
  

   

 

  

  

                               (4.31) 

By substituting eqs. (4.30) and (4.31) in eq. (4.29) we get 
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                 (4.32) 

The total energy of the 
3
He-neutron system can be written now by substituting 

eqs. (4.28) and (4.32) in eq. (4.20) we get  

            
    

  
 

    

  
          

  

  
   

  

 
    

   
 

 

  
 

 

 
   

 
    

    
 

       

 

   

     
          

       
  

   
 

          
  

 

 

  

  

    
 

   
 

    
    

          

 

 

                                                       
  

  

 

  

  

    
 

As mentioned above the terms 
    

  
 and 

    

  
 represents the kinetic energy of the 

3
He 

nucleus and the free neutron respectively, and so these terms do not contribute to the 

binding energy of the system. Thus the binding energy of 
3
He nucleus plus a free 

neutron can be written as 
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                                                               (4.33) 

In the derivation of eq. (4.33) we assumed that there is only one neutron around 

the 
3
He nucleus. We just use this assumption for simplicity, but our problem is to 

show how the presence of a vapor of protons and neutrons will affect the binding 

energy of the 
3
He cluster. For very low vapor densities, the free nucleons can be 

treated as an ideal gas and they do not interact with each other and so their effect on 

the binding energy of the nucleus can be obtained by multiplying the above terms by 

the number of nucleons. If we have   protons and neutrons (not only one neutron) 

around the 
3
He nucleus, the density of this vapor of protons and neutrons will be 

  
 

  . Now we can write the binding energy of 
3
He nucleus surrounded by a vapor 

of protons and neutrons as 

                
  

  
   

  

 
    

   
 

 

  
 

 

 
  

 
    

    

 
       

 

   

                                               
          

       
  

   
 

                                                
  

 

 

  

  

    
 

   
 

    
    

         

 

 

                                             
  

  

 

  

  

       

But as mentioned above   
 

   so  
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                                                                    (4.34) 

By substituting    and    from eq. (4.13) in eq. (4.34) we get 

            
  

 
    

   
 

 

  
 

 

 
  

 
    

    

 
       

 

   

                                                         
 
 

       
 
 

       
  

 
  

  

 

 
 

    
 

   

  
  

     

 
        

 

 

                                               
  

  

  

    
 

Finally this formula can be written simply as:             

          
 

 
          

  

 
 

 

   
 

 

  
 

 

   
  

 

    
     

 
     

 

 
 

  

  

                                                                      

  
 

  

       
  

 

    
     

 
       

 

                                                (4.35) 
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We must now take the ensemble average of this quantity over all values of        

and      in order to get the expectation value of  . We will do this in the next chapter 

by using the Fermi-Dirac statistics for the nucleons and the 
3
He nuclei. We will 

assume thermal and chemical equilibrium and use  the Nuclear Statistical Equilibrium 

(NSE) model to  relate the chemical potential of the 
3
He nuclei to the chemical 

potential of the nucleons. 
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CHAPTER 5. IDEAL FERMI GAS STATISTICS 

As motioned in chapter 2 both protons and neutrons are fermions. A 
3
He nucleus is 

also a fermion as its spin is    . Thus, we will use  Fermi-Dirac statistics to describe 

the momentum distribution of protons, neutrons and 
3
He nuclei within the box. We 

will assume that we have an ideal Fermi gas of nucleons in thermal and chemical 

equilibrium with the 
3
He nuclei. 

 

5.1 IDEAL FERMI GAS 

An ideal Fermi gas consists of non-interacting indistinguishable fermions which in 

turn must obey the Pauli exclusion principle. For a Fermi system the average 

occupancy number of a single-particle level with energy   is give by the Fermi-Dirac 

distribution function [45]   

       
 

                
                                            (5.1) 

where   is the chemical potential which is a function of density   and temperature  .   

The Boltzmann constant                                       .  

From eq. (5.1) we can notice that the average occupancy number cannot be more than 

  or less than  .  We can also notice that the Fermi-Dirac distribution has a special 

behavior at absolute zero      . At     the occupation is unity for all states with 

    and is zero for all states with    . This means that the Fermi gas at absolute 
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zero can be described as a completely degenerate gas. The value of   at     is 

often called the Femi-energy   . Thus, at absolute zero eq. (5.1) will be 

      
                    

                  

                                        (5.2) 

If we consider an ideal Fermi system of   non-interacting particles in a cubical 

box of volume     , such as a system of non-interacting nucleons which we will 

use in our work, the total number of particles   of such a system is 

    
 

                                                              (5.3) 

where   is a weight factor arising from the internal structure of the particles (such as 

the spin). For nucleons this factor represents the spin-isospin degeneracy factor and 

so    . For such a system the single particle energy is given by 

   
    

  
                                                           (5.4) 

where   is the mass of the particle, and   is the wave number of the particle.  

Talahmeh and Jaqaman in their work [14] started from eq. (5.3) and derived the 

general form of the equation of state at temperature   and number density     
 

 
 , of 

an infinite system of non-interacting particles, which is 

              
  

  

 
     

 
    

  
  

 
 

 

                        (5.5) 
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where    
   

    

    
 

   

 is called the thermal wavelength of the gas particles.  Also in 

eq. (5.5) the      are the expansion coefficients that were obtained by using the 

method of series inversion. From this equation one can notice easily the dependence 

of the chemical potential upon density and temperature.  

In our work we will use the first six   coefficients which were evaluated in [14] 

using MATLAB. These coefficients are listed in Table 4 below 

Table 4. Numerical values of the b coefficients for an ideal Fermi gas 

     

                    

                     

                     

                    

                  

                 

 

Eq. (5.5) represents the general form of the equation of state of any ideal Fermi 

gas. In our work we have an ideal Fermi gas of nucleons and an ideal Fermi gas of 

3
He nuclei. As mentioned in the previous chapter we will assume thermal and 

chemical equilibrium and use  the NSE model to relate the chemical potential of the 

3
He nuclei to the chemical potential of the nucleons. We will do this in the next 

section. 
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5.2 NUCLEAR STATISTICAL EQUILIBRIUM (NSE) MODEL 

The Nuclear Statistical Equilibrium (NSE) model is one of the models used to derive 

the equation of state of nuclear matter at the low density limit from a statistical point 

of view. It ignores the in-medium effects which result in the dissolution of clusters 

into their components. This means that this model fails at high densities where the 

medium modifications are important [10, 12]. 

As we mentioned above, the main problem in our research is to study the 

stability of 
3
He nuclei immersed in a hot low-density vapor of symmetric nuclear 

matter of protons and neutrons. We can see now that the NSE model is convenient to 

be used in our work.  

The chemical potentials of the surrounding protons and neutron (   and    

respectively) are given by eq. (5.5). According to the NSE model there will be a 

statistical and chemical equilibrium between clusters and the surrounding vapor of 

protons and neutrons, and so the chemical potential of a cluster   can be written as 

follows 

                                                   (5.6) 

But we assumed that the surrounding nuclear matter is symmetric. As a result of 

this symmetry assumption         , and thus 

                                                 (5.7) 
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where       is the atomic number of the cluster. In view of eq. (5.7) it is easy 

now to write the chemical potential of 
3
He cluster in terms of the chemical potential 

of the vapor of nucleons 

     
                                                  (5.8) 

Now we must pay attention to the probability of finding a cluster   with energy 

   as it is slightly different from that of free nucleons. We will use the Fermi-Dirac 

distribution function defined in eq. (5.1) but for the case of a cluster containing   

nucleons bound to each other, the binding energy of the cluster    must be subtracted 

from the energy   . This is clear in eq. (5.9) 

        
 

                     
                                     (5.9) 

where    is the density-dependent binding energy as given by eq. (4.35).  

By making use of the above discussion in this section and the previous one we 

can now find the ensemble average over all values of        and      and so the 

expectation value of   as we will see in the next section.  

5.3 ENSEMBLE AVERAGE OVER ALL VALUES OF       AND      AT     

It is known from statistical mechanics that the thermal average for any quantity       

is given by the relation 
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                                     (5.10) 

where       is probability function and    represent the momentum. 

In our work the probability function is the Fermi-Dirac distribution function (see 

eq. 5.1). Let us now use eq. (5.10) to find   
  

 

    
     

 
       

 

  and   
  

 

    
     

 
       

 

 . We will 

find the average for the general case of    
   

     

 
       

 

  where   is constant, then 

  
    

    

 
       

 

  
   

 
   

 

    
 
   

 

               
    

    

 
       

 

      

   
 
   

 

    
 
   

 

                    

 

where the factor   and   are the degeneracy factors: the first one stands for the two 

spin states of 
3
He nucleus and the second one  means there are two states of spin and 

isospin of nucleon. The average will be 

  
    

     

 
       

 

  
              

    
     

 
        

 

      

                   
                         (5.11) 

Let us find the integral in the numerator at first 
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                        (5.12) 

Let  

                   
 

 
                                         (5.13) 

Let      be in the  -direction and so it makes angle   with     (  is the angle in the 

spherical coordinates) which means that eq. (5.13) can be written as 

                   
   

 
 
                 

After evaluating the angular integral we get 

  
  

  
             

 

 
             

 

 
                             (5.14) 

But we know that 

 

   
          

                         where                         (5.15) 

So by making use of eq. (5.15) the Fermi-Dirac distribution function can be written as 
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   ,                                    (5.16) 

where  

                                                    (5.17) 

represents the classical Maxwell-Boltzmann distribution function. 

Substituting eq. (5.17) in eq. (5.14) we get  

                 
  

  
             

 
 
               

 
 
      

                                            

                  
  

  
             

 
 
              

 
 
             

                    
  

  
    

        
 
 
   

   
        

 
 
   

           

                    
  

  
             

 
 
               

 
 
              

                     
  

  
             

 
 
               

 
 
                 

Now we can write   as 



76 

 

  
  

  
          

 
                                         (5.18) 

where   

                
 

 
               

 

 
                              (5.19) 

This integral can be evaluated as follows 
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Let    
              

     
 and then completing the square with respect to   in both 

integrals we get 

                
    

       
         

  
   

 
 

       
         

  
   

 
 

     

Let us use the following change of variables: 

    
  

   
 in the first integral and     

  

   
 in the second integral, so that 

             
    

                
     

  

   
        

  
 

 

  
   

  
  
   

  

Since the first integral between brackets is odd it will vanish and so we get 

                                                             
    

   
   

   

 

 
 

 

  
 

                                                       
    

   
  

   
 

 

  
                                            (5.20) 

In view of eq. (5.18), eq. (5.12) becomes  
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                                                                   (5.21) 

where  

         
             

   

                                      (5.22) 

Now in order to evaluate the integral in eq. (5.22) we will use the same 

expansion for         as in eqs. (5.16) and (5.17), thus 

  
              

  

           
    

   
  

   
 

 

  
     

                                  
         

   
 

 

  
     

   
 

 
   

  

   
   

                   

                                                               
 

  

                                

where         can be defined as in eq. (5.17)                     
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Since    here represents the Fermi-Dirac distribution function of the 
3
He nuclei we 

must subtract the binding energy of 
3
He cluster from    as we did in eq. (5.9). Thus 

                     
      

            

Now, the integral   
  will be 

   
  

         

   
 

 

  
           

 
                                 (5.23) 

where   

                  
      

   
 

 
   

  

   
   

          

                           
  

   
     

   
  

   
     

     
   

 
 
   

  

   
   

   

     
   

    

                  
  

   
     

   
  

   
     

 
    

 
 

        

                       
 

   

        (5.24) 

Now let us evaluate the denominator in eq. (5.11)     

                                                    (5.25) 

Again we will use eqs. (5.16) and (5.17) to evaluate the two integrals            

and           . The first integral gives  
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                                                                               (5.26) 

where 

                                                          
   

     

                              

             
    

 
 

     

    
   

                                     (5.27) 

similarly  

                                            

                

                                                                          (5.28) 

where 

                 
  

   
     

   
  

   
     

   
  

     

         

      
  

   
     

   
  

   
     

 
    

 
 

     

    
   

                             (5.29) 

But        so that  
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                          (5.30)     

Now we can evaluate the average in eq. (5.11) as 

  
    

     

 
       

 

  
    

 
   

    
    

    
   

                              
                  (5.31)    

This is the general form of the average, but in our work we have two values of   (see 

eq. 4.35): 

   
 

          and      
 

                                 (5.32) 

In our work and after checking the convergence in the binding energy we will 

use only the first seven terms from eqs. (5.23) and (5.31)  in evaluating the averages 

  
   

 

    
     

 
       

 

  and   
   

 

    
     

 
       

 

  (see Fig 5.2). While checking the convergence of 

the binding energy we divided the last term of eqs. (5.23) and (5.31) by factor of two 

in order to reduce the effect of the alternating sign appeared in these equations. The 

results will be presented in Chapter 6. 

5.4 ENSEMBLE AVERAGE OVER ALL VALUES OF       AND      AT     

In this case the Fermi-Dirac distribution function which we will use is that defined in 

eq. (5.2). We will use the same procedure as in the previous section. Let us start from 

eq. (5.11). In the case of     we get in the numerator 
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                                                   (5.33) 

Let 

             
 

 
                                                    (5.34) 

Using the same procedure as in deriving eq. (5.14) from eq. (5.13) we get  

             
 
 
                   

       

           

 

                                     
  

  
             

 
 
     

  

   

             
 
 
     

  

   

  

By completing the square with respect to   in the above two integrals we get 

 
  

  
 

   

             
 
 

 
 

  

  

   

            
 
 

 
 

  

  

   

  

Let us use the following change of variables: 
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 in the first integral and     

 

 
 in the second integral, so that 

 
  

  
 

   

 

 
 
 
 
 

    
 

 
       

  

      
 
 

   
 
 

     
 

 
       

  

     
 
 

 
  

 
 
 
 

 

                      
  

  
 

   

         
  

     
 

 

  
 

 

         
  

     
 

 
 

 

        

      
 

 
        

  
      

 

 

  
 

 

        
  

     
 

 
 

 

                        (5.35) 

Recalling that  

        
    

 

  
      

 

Thus eq. (5.35) will be 
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where          is the error function, see [64]. Thus, the above equation will be 

 
  

    
 

   

            
 

 
 
 

           
 

 
 
 

                                         

 

 
 

 

 
 

   

 
   

            
 

 
              

 

 
                   (5.36) 

In view of eq. (5.36), eq. (5.33) will be 

   

  
             

 
 

 
 

           
 
 

 
 

   
  

 

  

      
 

 
 

   

              
 

 
              

 

 
     

  

 
        (5.37) 

Let us use the Taylor expansion of the error function [46] 

       
 

  
   

  

 
 

  

  
 

  

  
 

  

   
 

   

    
                             (5.38) 

We will use only the first six terms from eq. (5.38) in eq. (5.37) as this will give us 

convergence in the binding energy versus density curve as we will see below.  Now 

eq. (5.37) will be 
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                                                                  (5.39)                                                                

The first term in eq. (5.39) can be evaluated as in eq. (5.35) and so we get   
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                                                                   (5.40)                                                           

From eq. (5.4) we can see that the Fermi momentum can be written as 

  
  

  

     , 

 In view of eq. (5.8)      
      and by making use of the fact that       at     

and       we get that        , so that eq. (5.40) 

  
    

  
        

 
       

 

 
 

   

               
  

 
  

  
   

 
    

 
 

 
    

  
     

  
     

    
      

   
       

     
      

   
        

       
      

  
       (5.41)  

But to find the average we want to evaluate eq. (5.11) and so the integral 

                    must be evaluated at     which gives 
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                                                                                                          (5.42) 

Now the average at     can be obtained by substituting eqs. (5.41) and (5.42) in 

eq. (5.11), and thus 

  
   

    

 
     

 

   
 

    

 

  
         

 
    

 

  
 

 

  
 

    

  
            

 
  

  

 

 

 

  
  

  

  
 

   

   
   

  
    

    
    

  
    

     
    

  
     

      
    

 
       (5.43)                           

Again we will use eq.(5.43) to find the averages for both values of   (see eq. 5.32).  

In terms of eqs. (5.31) and (5.43) the expectation value of the binding energy in 

eq. (4.35) will be   

            
 

 
          

  

 
 

 

   
 

 

  
 

 

    
  

 

    
     

 
       

 

  
 

  

  

                     

            
 

 

  

        
  

 

    
     

 
       

 

                                        (5.44) 

It is clear from eq. (5.44) that the expectation value of the binding energy of 
3
He 

nuclei is a function of the number density   of the surrounding vapor. But we can 



88 

 

notice from eqs. (5.31) and (5.43) that the average over all values of      and     depends 

on the binding energy. This means that in order to calculate the expectation value of 

the binding energy many iterative operations are performed to achieve self 

consistency. In our work we stopped the iteration process when the difference 

between two successive values of the binding energy is            . 

We used MATLAB to evaluate  the eq. (5.44) which shows the expectation value 

of the binding energy as a function of the number density   at different temperatures. 

This is what we will show in the next chapter.  

The convergence in the binding energy at     when we used just the first six 

terms from eq. (5.38) can be seen in Fig. 5.1 below 

 

 

Fig. 5.1. The convergence in the binding energy of 
3
He nucleus at         when we used the 

first six terms of the Taylor expansion of the Error function  
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(a) 

 

(b) 

 

Fig. 5.2. The convergence in the binding energy of 
3
He at         when we used the first seven 

terms from eq. (5.23) and eq. (5.31) for (a)         and (b)         
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CHAPTER 6. RESULTS AND CONCLUSIONS 

In this chapter we calculate the effect of the presence of nucleons in the surrounding 

vapor on the binding energy of hot 
3
He nuclei moving in a hot low-density medium 

of symmetric nuclear matter. Including the CM momentum of 
3
He  nuclei is the main 

significant difference between this study and the study proposed by Typel et. al. [12].  

6.1 BINDING ENERGY DEPENDENCE ON DENSITY AND TEMPERATURE 

In the previous chapter we derived the expectation value of the binding energy of a 

system composed of 
3
He nuclei moving in a hot low-density symmetric nuclear 

matter of protons and neutrons (see eq. 5.44). From this equation we can see that the 

binding energy is a function of the number density   of the surrounding medium. The 

temperature-dependence of the binding energy is included in the terms  

  
   

 

    
     

 
       

 

  and   
   

 

    
     

 
       

 

  as it is clear in eq. (5.31) and eq. (5.43). We can 

also see that the expectation value of the binding energy depends on the Skyrme 

parameters   ,   , and   . The values of the first two parameters (   and   ) were 

found in chapter three (see eq. 3.36). The value of the parameter    cannot be 

uniquely determined and so we will allow it to take different values. Here is a list of 

the values of    which were used in several works in Table  5  
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Table 5. Different values of    

   value Reference 

     [2] 

     [2] 

     [16] 

     [14] 

     [2] 

     [16] 

     [14] 

 

We will use just two values from the above table in our work. These two values, 

which are used in [14, 16], are      and     . The temperature-dependence of the 

binding energy at the two different values of    is shown in Figs. (6.1) and (6.2) 

below 

 
Fig. 6.1. The binding energy of 

3
He nucleus in a hot low-density medium of symmetric nuclear 

matter at different temperatures at        . 
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From the above two figures we can also notice that regardless the value of   , as 

the temperature increases the cluster can survive up to higher densities. This result is 

expected as the Pauli blocking effect is less effective at higher temperatures.  

Let us now compare our results with those of Typel et. al. at each temperature 

separately. We will show this in the following figures. We will discuss two cases: the 

case in which the cluster has a momentum           and the case when the cluster is 

at rest         . In the second case our results are different from those of Typel et. al. 

as we will see below.   

Fig. 6.2. The binding energy of 
3
He nucleus in a hot low-density medium of symmetric nuclear 

matter at different temperatures at        . 
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Fig. 6.3. Binding energy versus density at T = 0 MeV  

 

Fig. 6.4. Binding energy versus density at T = 5 MeV  
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Fig. 6.5. Binding energy versus density at T = 10 MeV  

 

Fig. 6.6. Binding energy versus density at T = 15 MeV  
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From the above Figs. (6.3 - 6.7) we can conclude the following:  

a. Regardless of the temperature, when the 
3
He nuclei are moving within the 

surrounding medium (have momentum       ) they can survive to higher 

densities than that if they are at rest         .  This is because when  

         the Pauli blocking effect, which is the main reason for the 

cluster dissociation, is less effective.  

b. Another important conclusion on the above figures is that there is a 

significant difference between our results when we considered the case in 

which the 
3
He clusters are at rest and that of Typel. This because in our 

work we used some approximations which are different from those in 

Fig. 6.7. Binding energy versus density at T = 20 MeV  
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Typel, for example we assumed that the wave function of the 
3
He cluster 

will not change when it is immersed within the medium. We used this 

assumption to simplify our calculations. Another difference is that we 

ignored the Coulomb effects which were considered in Typel. We also 

neglect the self-energy of the cluster. Typel et. al. in their work added 

non-linear terms to the binding energy but we considered just only the 

linear term. This is clear in Table 7 below.  

c. The Skyrme parameter    has also a small effect on the Mott density as 

we can see. As this parameter cannot be uniquely determined we may 

have more than one value of the Mott density of
 3

He nuclei at the same 

temperature. The values of the Mott density of the 
3
He nuclei which we 

obtained in our work are summarized in Table 6  

Table 6. Values of the Mott density of 
3
He nuclei obtained in the present work at 

different temperatures and different values of    

Temperature   

(MeV) 

                

Mott density at         

(nucleon/fm
3
) 

Mott density at         

(nucleon/fm
3
) 
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Table 7. Comparison between the Mott densities obtained by Typel et. al. and those 

obtained in the present work of the 
3
He nucleus for different temperatures and with 

        

Temperature 

  (MeV) 

        

Mott density  

(Typel et. al. work) 

(nucleon/fm
3
) 

Mott density   

(Results of present 

work at         ) 

(nucleon/fm
3
) 

Mott density   

(Results of present work 

at         ) 

(nucleon/fm
3
) 

                             

                             

                                

                              

                              

 

In Table 6 we used          as the curves we have at this value are closer to 

those obtained by Typel and his coworkers, and thus, it is more convenient to make 

the comparison in this case. 

Temperature and density dependence of the Mott density of 
3
He was derived 

experimentally by Hagel et. al. recently [47]. The experimental Mott density of 
3
He is 

about 0.0045 nucleon/fm
3
 at T = 5 MeV. There is a noticeable difference between this 

experimental value at the value found in our work. We found that the Mott density of 

3
He cluster moving with a momentum      is about 0.0089 nucleon/fm

3
 at         

and 0.0073 nucleon/fm
3
 at        . When we assumed that 

3
He is at rest we 
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obtained results closer to the experimental value as we can notice from Table 7. At 

        and        the Mott density is 0.0065 nucleon/fm3. The differences 

between our results and the experimental results are due to the simplifying 

assumptions we used in our work such as the assumption that the wave function of 

the 
3
He cluster will not be affected by the surrounding medium and the neglecting of 

the self-energy term. 

In our work in this thesis we evaluated  the change in the binding energy of 
3
He 

nuclei due to their CM momentum when immersed in a hot low-density vapor of 

symmetric nuclear matter of protons and neutrons. We conclude that the contribution 

from the CM momentum of the clusters is significant and so it must be taken into 

account in order to be more realistic. 

In future work we may develop our work by considering the Coulomb effects 

and the symmetry energy of the clusters to obtain more realistic results. Another 

important thing, which we ignored here, is taking into account the change in the wave 

function of the 
3
He cluster when it is immersed in a medium. The wave function of 

the cluster cannot stay the same while its binding energy decreases. We can also 

improve our work by considering the excited states of 
3
He especially at high 

temperatures but this is very complicated and needs numerous work. 
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